Ward van Pelt
Associate professor

New publication

Have a look at our recent study on ice thickness inversion in Scandinavia!


Pictures of our annual field campaigns to Svalbard can be found here.

Peer-reviewed publications


  1. Frank, T., and W.J.J. van Pelt (2024). Ice volume and thickness of all Scandinavian glaciers and ice caps. Journal of Glaciology, first-view. doi:10.1017/jog.2024.25
  2. Vickers, H., T.M. Saloranta, M. Køltzow, W.J.J. van Pelt, and E. Malnes (2024). An analysis of winter rain-on-snow climatology in Svalbard. Frontiers in Earth Science: Cryospheric Sciences, 12. doi:10.3389/feart.2024.1342731
  3. Zdanowicz, C., and 45 others (2024). An agenda for the future of snow research in Svalbard - a multidomain approach. Svalbard Integrated Arctic Earth Observing System, 55 p. doi:10.5281/zenodo.6415927


  1. Frank, T., W.J.J. van Pelt, and J. Kohler (2023). Reconciling ice dynamics and bed topography with a versatile and fast ice thickness inversion. The Cryosphere, 17, 4021–4045. doi:10.5194/tc-17-4021-2023
  2. Terleth, Y., W.J.J. van Pelt, and R. Pettersson (2023). Spatial variability in winter mass balance on Storglaciären modelled with a terrain based approach. Journal of Glaciology, 69(276), 749-761. doi:10.1017/jog.2022.96
  3. Ignatiuk, D., T. Dunse, J.-C. Gallet, L. Girod, M. Grabiec, D. Kępski, J. Kohler, M. Laska, B. Luks, W.J.J. van Pelt, R. Pettersson, V.A. Pohjola, T.V. Schuler (2023). Ground penetrating radar measurement of snow in Svalbard - past, present, future. In: Gevers M et al (eds) SESS report 2022, Svalbard Integrated Arctic Earth Observing System, Longyearbyen, pp 116-141. doi:10.5281/zenodo.7371724


  1. Kronenberg, M., W.J.J. van Pelt, H. Machguth, J. Fiddes, M. Hoelzle, and F. Pertziger (2022). Long-term firn and mass balance modelling for Abramov Glacier in the data-scarce Pamir Alay. The Cryosphere, 16, 5001–5022. doi:10.5194/tc-16-5001-2022
  2. Maier, K., A. Nascetti, W.J.J. van Pelt, and G. Rosqvist (2022). Direct photogrammetry with multispectral imagery for UAV-based snow depth estimation. ISPRS Journal of Photogrammetry and Remote Sensing, 186, 1-18. doi:10.1016/j.isprsjprs.2022.01.020
  3. Geyman, E.C., W.J.J. van Pelt, A.C. Maloof, H. Faste Aas, and J. Kohler (2022). Historical glacier change on Svalbard predicts doubling of mass loss by 2100. Nature, 601, 374-379. doi:10.1038/s41586-021-04314-4
  4. Kierulf, H.P., W.J.J. van Pelt, L. Petrov, M. Dähnn, A.-S. Kirkvik, and O. Omang (2022). Seasonal glacier and snow loading in Svalbard recovered from geodetic observations. Geophysical Journal International, 229(1), 408-425. doi:10.1093/gji/ggab482


  1. Bertrand, P., H. Strøm, J. Bêty, H. Steen, J. Kohler, M. Vihtakari, W.J.J. van Pelt, N.G. Yoccoz, H. Hop, S. Harris, S. Patrick, P. Assmy, A. Wold, P. Duarte, G. Moholdt, and S. Descamps (2021). Feeding at the front line: Interannual variation in the use of glacier fronts by foraging black-legged kittiwakes. Marine Ecology Progress Series, 677, 197-208. doi:10.3354/meps13869
  2. Terleth, Y., W.J.J. van Pelt, V.A. Pohjola, and R. Pettersson (2021). Complementary approaches towards a universal model of glacier surges. Frontiers in Earth Science, 9:732962. doi:10.3389/feart.2021.732962
  3. Mattea, E., H. Machguth, M. Kronenberg, W.J.J. van Pelt, M. Bassi, and M. Hoelzle (2021). Firn changes at Colle Gnifetti revealed with a high-resolution process-based physical model approach. The Cryosphere, 15, 3181-3205. doi:10.5194/tc-15-3181-2021
  4. Vickers, H., E. Malnes, W.J.J. van Pelt, V.A. Pohjola, M.A. Killie, T. Saloranta, and S.R. Karlsen (2021). A compilation of snow cover datasets for Svalbard: a multi-sensor, multi-model study. Remote Sensing, 13(10), 2002. doi:10.3390/rs13102002
  5. Marchenko, S., W.J.J. van Pelt, R. Pettersson, V.A. Pohjola, and C.H. Reijmer (2021). Water content of firn at Lomonosovfonna, Svalbard, derived from subsurface temperature measurements. Journal of Glaciology, 67(265), 921-932. doi:10.1017/jog.2021.43
  6. Zdanowicz, C., J.-C. Gallet, M.P. Björkman, C. Larose, T.V. Schuler, B. Luks, K. Koziol, A. Spolaor, E. Barbaro, T. Martma, W.J.J. van Pelt, U. Wideqvist, and J. Ström (2021). Elemental and water-insoluble organic carbon in Svalbard snow: A synthesis of observations during 2007–2018. Atmospheric Chemistry and Physics, 21, 3035–3057. doi:10.5194/acp-21-3035-2021
  7. Van Pelt, W.J.J., T.V. Schuler, V.A. Pohjola, and R. Pettersson (2021). Accelerating future mass loss of Svalbard glaciers from a multi-model ensemble. Journal of Glaciology, 67(263), 485-499. doi:10.1017/jog.2021.2
  8. Malnes, E., H. Vickers, S.R. Karlsen, T. Saloranta, M.A. Killie, W.J.J. van Pelt, V.A. Pohjola, J. Zhang, L. Stendardi, and C. Notarnicola (2021). Satellite and modelling based snow season time series for Svalbard: Inter-comparisons and assessment of accuracy. In: Moreno-Ibáñez et al (eds) SESS report 2020, Svalbard Integrated Arctic Earth Observing System, Longyearbyen, pp 202 - 219. doi:10.5281/zenodo.4294072
  9. Killie, M.A., S. Aaboe, K. Isaksen, W.J.J. van Pelt, Å.Ø. Pedersen, and B. Luks (2021). Svalbard snow and sea-ice cover: comparing satellite data, on-site measurements, and modelling results. In: Moreno-Ibáñez et al (eds) SESS report 2020, Svalbard Integrated Arctic Earth Observing System, Longyearbyen, pp 220 - 235. doi:10.5281/zenodo.4293804
  10. Farinotti, D., D.J. Brinkerhoff, J.J. Fürst, P. Gantayat, F. Gillet-Chaulet, M. Huss, P.W. Leclercq, H. Maurer, M. Morlighem, A. Pandit, A. Rabatel, RAAJ Ramsankaran, T.J. Reerink, E. Robo, E. Rouges, E. Tamre, W.J.J. van Pelt, M.A. Werder, M. Farooq Azam, H. Li, and L.M. Andreassen (2021). Results from the Ice Thickness Models Intercomparison eXperiment phase 2 (ITMIX2). Frontiers in Earth Science: Cryospheric Sciences, 8, 571923. doi:10.3389/feart.2020.571923


  1. Vandecrux, B., R. Mottram, P.L. Langen, R.S. Fausto, M. Olesen, C.M. Stevens, V. Verjans, A. Leeson, S. Ligtenberg, P. Kuipers Munneke, S. Marchenko, W.J.J. van Pelt, C. Meyer, S.B. Simonsen, A. Heilig, S. Samimi, S. Marshall, H. Machguth, M. MacFerrin, M. Niwano, O. Miller, C.I. Voss, and J.E. Box (2020). The firn meltwater Retention Model Intercomparison Project (RetMIP): Evaluation of nine firn models at four weather station sites on the Greenland ice sheet. The Cryosphere, 14, 3785-3810. doi:10.5194/tc-14-3785-2020
  2. Noël, B.P.Y., C.L. Jakobs, W.J.J. van Pelt, S. Lhermitte, B. Wouters, J. Kohler, J.O. Hagen, B. Luks, C.H. Reijmer, W.J. van de Berg, and M. van den Broeke (2020). Low elevation of Svalbard glaciers drives high mass loss variability. Nature Communications, 11, 4597. doi:10.1038/s41467-020-18356-1
  3. Schuler, T.V., J. Kohler, N. Elagina, J.O. Hagen, A.J. Hodson, J. Jania, A.M. Kääb, B. Luks, J. Malecki, G. Moholdt, V. Pohjola, I. Sobota, and W.J.J. van Pelt (2020). Reconciling Svalbard glacier mass balance. Frontiers in Earth Science: Cryospheric Sciences, 8, 156. doi:10.3389/feart.2020.00156
  4. Schuler, T.V., A. Glazovsky, J.O. Hagen, A. Hodson, J. Jania, A. Kääb, J. Kohler, B. Luks, J. Malecki, G. Moholdt, V.A. Pohjola, and W.J.J. van Pelt (2020). New data, new techniques and new challenges for updating the state of Svalbard glaciers (SvalGlac). In: Van den Heuvel et al. (eds): SESS report 2019, Svalbard Integrated Arctic Earth Observing System, Longyearbyen, pp. 109 - 134. link


  1. Van Pelt, W.J.J., V.A. Pohjola, R. Pettersson, S. Marchenko, J. Kohler, B. Luks, J.O. Hagen, T.V. Schuler, T. Dunse, B. Noël, and C.H. Reijmer (2019). A long-term dataset of climatic mass balance, snow conditions and runoff in Svalbard (1957–2018). The Cryosphere, 13, 2259-2280. doi:10.5194/tc-13-2259-2019
  2. Pramanik, A., J. Kohler, T.V. Schuler, W.J.J. van Pelt, and L. Cohen (2019). Comparison of snow accumulation events on two High Arctic glaciers to model-derived and observed precipitation. Polar Research, 38. doi:10.33265/polar.v38.3364
  3. Marchenko, S., G. Cheng, P. Lötstedt, V.A. Pohjola, R. Pettersson, W.J.J. van Pelt, and C.H. Reijmer (2019). Thermal conductivity of firn at Lomonosovfonna, Svalbard, derived from subsurface temperature measurements. The Cryosphere, 13, 1843-1859. doi:10.5194/tc-13-1843-2019
  4. Köhler, A., V. Maupin, C. Nuth, and W.J.J. van Pelt (2019). Characterization of seasonal glacial seismicity from a single-station on-ice record at Holtedahlfonna, Svalbard, Annals of Glaciology, 60, 23-36. doi:10.1017/aog.2019.15
  5. Deschamps-Berger, C., C. Nuth, W.J.J. van Pelt, E. Berthier, J. Kohler, and B. Altena (2019). Closing the mass budget of a tidewater glacier: the example of Kronebreen, Svalbard. Journal of Glaciology, 65(249), 136-148. doi:10.1017/jog.2018.98


  1. Pramanik, A., W.J.J. van Pelt, J. Kohler, and T.V. Schuler (2018). Simulating climatic mass balance, seasonal snow development and associated freshwater runoff in the Kongsfjord basin, Svalbard (1980-2016). Journal of Glaciology, 64, 943-956. doi:10.1017/jog.2018.80
  2. Van Pelt, W.J.J., V.A. Pohjola, R. Pettersson, L.E. Ehwald, C.H. Reijmer, W. Boot, and C.L. Jakobs (2018). Dynamic response of a High Arctic glacier to melt and runoff variations. Geophysical Research Letters, 45, 4917–4926. doi:10.1029/2018GL077252
  3. Winsvold, S.H., A. Kääb, C. Nuth, L.M. Andreassen, W.J.J. van Pelt and T. Schellenberger (2018). Using SAR data time-series for regional glacier mapping. The Cryosphere, 12, 867-890. doi:10.5194/tc-12-867-2018
  4. Vallot, D., J. Åström, T. Zwinger, R. Pettersson, A. Everett, D.I. Benn, A. Luckman, W.J.J. van Pelt and F. Nick (2018). Effects of undercutting and sliding on calving: a coupled approach applied to Kronebreen, Svalbard. The Cryosphere, 12, 609-625. doi:10.5194/tc-12-609-2018


  1. How, P., D.I. Benn, N.R.J. Hulton, B. Hubbard, A. Luckman, H. Sevestre, W.J.J. van Pelt, K. Lindback, J. Kohler and W. Boot (2017). Rapidly-changing subglacial hydrology pathways at a tidewater glacier revealed through simultaneous observations of water pressure, supraglacial lakes, meltwater plumes and surface velocities. The Cryosphere, 11, 2691-2710. doi:10.5194/tc-11-2691-2017
  2. Vallot, D., R. Pettersson, A. Luckman, D. Benn, T. Zwinger, W.J.J. van Pelt, J. Kohler, M. Schaefer, B. Claremar, and N. Hulton (2017). Dynamics of a fast-flowing tidewater glacier: complex spatio-temporal response to basal water input. Journal of Glaciology, 63, 242, 1012-1024. doi:10.1017/jog.2017.69
  3. Farinotti, D., and 35 others (2017). How accurate are estimates of glacier ice thickness? Results from ITMIX, the Ice Thickness Models Intercomparison eXperiment. The Cryosphere, 11, 949-970. doi:10.5194/tc-11-949-2017
  4. Marchenko, S., W.J.J. van Pelt, B. Claremar, H. Machguth, C.H. Reijmer, R. Pettersson and V.A. Pohjola (2017). Parameterizing deep water percolation improves subsurface temperature simulations by a multilayer firn model. Frontiers in Earth Science: Cryospheric Sciences, 5, 16. doi:10.3389/feart.2017.00016


  1. Van Pelt, W.J.J., V.A. Pohjola and C.H. Reijmer (2016). The changing impact of snow conditions and refreezing on the mass balance of an idealized Svalbard glacier. Frontiers in Earth Science: Cryospheric Sciences, 4, 102. doi:10.3389/feart.2016.00102
  2. Van Pelt, W.J.J., J. Kohler, G.E. Liston, J.O. Hagen, B. Luks, C.H. Reijmer and V.A. Pohjola (2016). Multi-decadal climate and seasonal snow conditions in Svalbard. Journal of Geophysical Research: Earth Surface, 121, 11. doi:10.1002/2016JF003999
  3. Marchenko, S., V.A. Pohjola, R. Pettersson, W.J.J. van Pelt, C.P. Vega, H. Machguth, C.E. Bøggild and E. Isaksson (2016). A plot-scale study of firn stratigraphy at Lomonosovfonna, Svalbard, using ice cores, borehole video and GPR surveys in 2012-2014. Journal of Glaciology, 63, 237, 67-78. doi:10.1017/jog.2016.118
  4. Vega, C.P., V.A. Pohjola, E. Beaudon, B. Claremar, W.J.J. van Pelt, R. Pettersson, E. Isaksson, T. Martma, M. Schwikowski and C. E. Bøggild (2016). A synthetic ice core approach to estimate ion relocation in an ice field site experiencing periodical melt; a case study on Lomonosovfonna, Svalbard. The Cryosphere, 10, 961-976. doi:10.5194/tc-10-961-2016


  1. Van Pelt, W.J.J. and J. Kohler (2015). Modelling the long-term mass balance and firn evolution of glaciers around Kongsfjorden, Svalbard. Journal of Glaciology, 61(228), 731-744. doi:10.3189/2015JoG14J223
  2. Bueler, E.L. and W.J.J. van Pelt (2015). Mass-conserving subglacial hydrology in the Parallel Ice Sheet Model. Geoscientific Model Development, 8, 1613-1635. doi:10.5194/gmd-8-1613-2015
  3. Christianson, K., J. Kohler, R.B. Alley, C. Nuth and W.J.J. van Pelt (2015). Dynamic perennial firn aquifer on an Arctic glacier. Geophysical Research Letters, 42, 1418-1426, doi:10.1002/2014GL062806
  4. Oerlemans, J. and W.J.J. van Pelt (2015). A model study of Abrahamsenbreen (northern Spitsbergen). The Cryosphere, 9, 767-779. doi:10.5194/tc-9-767-2015


  1. Van Pelt, W.J.J., R. Pettersson, V.A. Pohjola, S. Marchenko, B. Claremar and J. Oerlemans. (2014). Inverse estimation of snow accumulation along a snow radar transect on Nordenskiöldbreen, Svalbard. Journal of Geophysical Research: Earth Surface, 119, 4, 816-835. doi:10.1002/2013JF003040


  1. Van Pelt, W.J.J., J. Oerlemans, C.H. Reijmer, R. Pettersson, V.A. Pohjola, E. Isaksson and D. Divine (2013). An iterative inverse method to estimate basal topography and initialize ice flow models. The Cryosphere, 7, 987-1006. doi:10.5194/tc-7-987-2013


  1. Van Pelt, W.J.J., J. Oerlemans, C.H. Reijmer, V.A. Pohjola, R. Pettersson and J.H. van Angelen (2012). Simulating melt, runoff and refreezing on Nordenskiöldbreen, Svalbard, using a coupled snow and energy balance model. The Cryosphere, 6, 641-659. doi:10.5194/tc-6-641-2012
  2. Van Pelt, W.J.J. and J. Oerlemans (2012). Numerical simulations of cyclic behaviour in the Parallel Ice Sheet Model (PISM). Journal of Glaciology, 58(208), 347-360. doi:10.3189/2012JoG11J217